El Método de Soluciones Fundamentales y su uso en problemas Dirichlet para el operador de Laplace

En esta trabajo se hace una exposición del Método de Soluciones Fundamentales (MFS, por sus siglas en inglés), el cual es un método numérico utilizado para resolver ecuaciones diferenciales parciales elípticas con condiciones en la frontera. La exposición se concentra en el caso particular del opera...

Descripción completa

Guardado en:
Detalles Bibliográficos
Autor principal: Centeno Mora, Jesús Felipe
Formato: Online
Lenguaje:spa
Publicado: Universidad de Sonora 2023
Acceso en línea:https://sahuarus.unison.mx/index.php/sahuarus/article/view/134
Etiquetas: Agregar Etiqueta
Sin Etiquetas, Sea el primero en etiquetar este registro!
Descripción
Sumario:En esta trabajo se hace una exposición del Método de Soluciones Fundamentales (MFS, por sus siglas en inglés), el cual es un método numérico utilizado para resolver ecuaciones diferenciales parciales elípticas con condiciones en la frontera. La exposición se concentra en el caso particular del operador de Laplace, se presentan además ejemplos de prueba para tal operador con condiciones en la frontera del tipo Dirichlet sobre dominios circulares con variantes en cuanto a la  configuración, como lo son la elección de diferentes fronteras virtuales y la variación en la distribución tanto de los puntos de colocación como de las ubicaciones de las fuentes puntuales. Se obtuvieron datos con el propósito de observar el impacto que cada configuración tuvo en la exactitud y en la estabilidad numérica del método.