Prediction of the number of production stoppages in assembly lines

A methodology is presented to evaluate the current condition and predict the cause of inactivity of assembly lines by performing an analysis of the number of production stoppages. The behavior of the stoppages is investigated by cause and by type of work station, in order to guide better decision ma...

Szczegółowa specyfikacja

Zapisane w:
Opis bibliograficzny
Główni autorzy: Orrantia-Daniel, Gilberto, Sánchez-Leal, Jaime, Riva-Rodríguez, Jorge, Rodríguez-Medina, Manuel, Reyes-Martínez, Rosa María
Format: Online
Język:spa
Wydane: Universida de Sonora 2019
Dostęp online:https://epistemus.unison.mx/index.php/epistemus/article/view/93
Etykiety: Dodaj etykietę
Nie ma etykietki, Dołącz pierwszą etykiete!
id oai:http:--epistemus.unison.mx:article-93
record_format ojs
spelling oai:http:--epistemus.unison.mx:article-932021-07-29T02:22:59Z Prediction of the number of production stoppages in assembly lines PREDICCIÓN DEL NÚMERO DE PAROS DE PRODUCCIÓN EN LÍNEAS DE ENSAMBLE Orrantia-Daniel, Gilberto Sánchez-Leal, Jaime Riva-Rodríguez, Jorge Rodríguez-Medina, Manuel Reyes-Martínez, Rosa María Assembly lines chi-square test multinomial distribution line stoppag Líneas de ensamble prueba chi-cuadrada distribución multinomial paro de línea A methodology is presented to evaluate the current condition and predict the cause of inactivity of assembly lines by performing an analysis of the number of production stoppages. The behavior of the stoppages is investigated by cause and by type of work station, in order to guide better decision making. The data collected was the station that causes the line stoppage, its cause and the number of stoppages. The calculations obtained were the probabilities of the causes of stoppage, applying the chi-square goodness of fit test. Based on the multinomial distribution, models were presented to predict the causes of the next “m” stoppages of the line. In addition, one of the main findings was that the stoppages due to operators are 61.37% of all stoppages, so it is recommended to maximize the skills and knowledge of the operators. Es presentada una metodología para evaluar la condición actual y predecir la causa de inactividad de líneas de ensamble realizando un análisis del número de paros de producción. Es investigado el comportamiento de los paros por causa y por tipo de estación de trabajo, para así orientar a una mejor toma de decisiones. Los datos recolectados fueron la estación que provoca el paro de línea, su causa y el número de paros. Los cálculos obtenidos fueron las probabilidades de las causas de paro, aplicando la prueba de bondad de ajuste chi-cuadrada. En base a la distribución multinomial, fueron presentados modelos para predecir las causas de los próximos “m” paros de la línea. Además, uno de los principales hallazgos fue que los paros debidos a los operadores son el 61.37% de todos los paros, por lo que es recomendado maximizar las habilidades y conocimientos de los operadores. Universida de Sonora 2019-06-30 info:eu-repo/semantics/article info:eu-repo/semantics/publishedVersion Research Investigación application/pdf https://epistemus.unison.mx/index.php/epistemus/article/view/93 10.36790/epistemus.v13i26.93 EPISTEMUS; Vol. 13 No. 26 (2019): Science does not stop; 29-35 EPISTEMUS; Vol. 13 Núm. 26 (2019): La ciencia no cesa; 29-35 2007-8196 2007-4530 spa https://epistemus.unison.mx/index.php/epistemus/article/view/93/67 https://creativecommons.org/licenses/by-nc-nd/4.0
institution Epistemus
collection OJS
language spa
format Online
author Orrantia-Daniel, Gilberto
Sánchez-Leal, Jaime
Riva-Rodríguez, Jorge
Rodríguez-Medina, Manuel
Reyes-Martínez, Rosa María
spellingShingle Orrantia-Daniel, Gilberto
Sánchez-Leal, Jaime
Riva-Rodríguez, Jorge
Rodríguez-Medina, Manuel
Reyes-Martínez, Rosa María
Prediction of the number of production stoppages in assembly lines
author_facet Orrantia-Daniel, Gilberto
Sánchez-Leal, Jaime
Riva-Rodríguez, Jorge
Rodríguez-Medina, Manuel
Reyes-Martínez, Rosa María
author_sort Orrantia-Daniel, Gilberto
title Prediction of the number of production stoppages in assembly lines
title_short Prediction of the number of production stoppages in assembly lines
title_full Prediction of the number of production stoppages in assembly lines
title_fullStr Prediction of the number of production stoppages in assembly lines
title_full_unstemmed Prediction of the number of production stoppages in assembly lines
title_sort prediction of the number of production stoppages in assembly lines
description A methodology is presented to evaluate the current condition and predict the cause of inactivity of assembly lines by performing an analysis of the number of production stoppages. The behavior of the stoppages is investigated by cause and by type of work station, in order to guide better decision making. The data collected was the station that causes the line stoppage, its cause and the number of stoppages. The calculations obtained were the probabilities of the causes of stoppage, applying the chi-square goodness of fit test. Based on the multinomial distribution, models were presented to predict the causes of the next “m” stoppages of the line. In addition, one of the main findings was that the stoppages due to operators are 61.37% of all stoppages, so it is recommended to maximize the skills and knowledge of the operators.
publisher Universida de Sonora
publishDate 2019
url https://epistemus.unison.mx/index.php/epistemus/article/view/93
work_keys_str_mv AT orrantiadanielgilberto predictionofthenumberofproductionstoppagesinassemblylines
AT sanchezlealjaime predictionofthenumberofproductionstoppagesinassemblylines
AT rivarodriguezjorge predictionofthenumberofproductionstoppagesinassemblylines
AT rodriguezmedinamanuel predictionofthenumberofproductionstoppagesinassemblylines
AT reyesmartinezrosamaria predictionofthenumberofproductionstoppagesinassemblylines
AT orrantiadanielgilberto predicciondelnumerodeparosdeproduccionenlineasdeensamble
AT sanchezlealjaime predicciondelnumerodeparosdeproduccionenlineasdeensamble
AT rivarodriguezjorge predicciondelnumerodeparosdeproduccionenlineasdeensamble
AT rodriguezmedinamanuel predicciondelnumerodeparosdeproduccionenlineasdeensamble
AT reyesmartinezrosamaria predicciondelnumerodeparosdeproduccionenlineasdeensamble
_version_ 1714622236559671296