Geometrı́a y Dinámica del oscilador armónico 2-dimensional

En este artı́culo se estudia la geometrı́a y la dinámica del oscilador armónico 2-dimensional como un sistema de ecuaciones diferenciales lineales en R 4 . Se describen explícitamente los conjuntos invariantes del oscilador los cuales en su gran mayoría resultan ser toros 2-dimensionales. Luego, se...

Descrición completa

Gardado en:
Detalles Bibliográficos
Autor Principal: Avendaño Camacho, Misael
Formato: Online
Idioma:spa
Publicado: Universidad de Sonora 2019
Acceso en liña:https://sahuarus.unison.mx/index.php/sahuarus/article/view/101
Etiquetas: Engadir etiqueta
Sen Etiquetas, Sexa o primeiro en etiquetar este rexistro!
Descripción
Sumario:En este artı́culo se estudia la geometrı́a y la dinámica del oscilador armónico 2-dimensional como un sistema de ecuaciones diferenciales lineales en R 4 . Se describen explícitamente los conjuntos invariantes del oscilador los cuales en su gran mayoría resultan ser toros 2-dimensionales. Luego, se estudia la dinámica del sistema sobre los toros de Liouville y se exhibe la gran dependencia cualitativa que esta tiene de una relación aritmética entre sus frecuencias, pasando de tener órbitas periódicas en los toros a tener trayectorias densas sobre éstos. Si bien este hecho es bien conocido en la teorı́a de sistemas Hamiltonianos integrables, aquí presentamos los resultados haciendo solamente uso de conceptos básicos de cálculo y ecuaciones diferenciales.